Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
JMIRx Med ; 5: e51787, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38606668

RESUMO

Background: Animal-assisted therapy, also known as pet therapy, is a therapeutic intervention that involves animals to enhance the well-being of individuals across various populations and settings. Objective: This systematic study aims to assess the outcomes of animal-assisted therapy interventions and explore the associated policies. Methods: A total of 16 papers published between 2015 and 2023 were selected for analysis. These papers were chosen based on their relevance to the research topic of animal-assisted therapy and their availability in scholarly databases. Thematic synthesis and meta-analysis were used to synthesize the qualitative and quantitative data extracted from the selected papers. Results: The analysis included 16 studies that met the inclusion criteria and were deemed to be of moderate or higher quality. Among these studies, 4 demonstrated positive results for therapeutic mediation and one for supportive mediation in psychiatric disorders. Additionally, all studies showed positive outcomes for depression and neurological disorders. Regarding stress and anxiety, 3 studies indicated supportive mediation, while 2 studies showed activating mediation. Conclusions: The overall assessment of animal-assisted therapy shows promise as an effective intervention in promoting well-being among diverse populations. Further research and the establishment of standardized outcome assessment measures and comprehensive policies are essential for advancing the field and maximizing the benefits of animal-assisted therapy.

2.
Microorganisms ; 12(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276191

RESUMO

The Totiviridae family of viruses has a unique genome consisting of double-stranded RNA with two open reading frames that encode the capsid protein (Cap) and the RNA-dependent RNA polymerase (RdRpol). Most virions in this family are isometric in shape, approximately 40 nm in diameter, and lack an envelope. There are five genera within this family, including Totivirus, Victorivirus, Giardiavirus, Leishmaniavirus, and Trichomonasvirus. While Totivirus and Victorivirus primarily infect fungi, Giardiavirus, Leishmaniavirus, and Trichomonasvirus infect diverse hosts, including protists, insects, and vertebrates. Recently, new totivirus-like species have been discovered in fish and plant hosts, and through metagenomic analysis, a novel totivirus-like virus (named Tianjin totivirus) has been isolated from bat guano. Interestingly, Tianjin totivirus causes cytopathic effects in insect cells but cannot grow in mammalian cells, suggesting that it infects insects consumed by insectivorous bats. In this study, we used next-generation sequencing and identified totivirus-like viruses in liver tissue from Molossus molossus bats in the Amazon region of Brazil. Comparative phylogenetic analysis based on the RNA-dependent RNA polymerase region revealed that the viruses identified in Molossus bats belong to two distinct phylogenetic clades, possibly comprising different genera within the Totiviridae family. Notably, the mean similarity between the Tianjin totivirus and the totiviruses identified in Molossus bats is less than 18%. These findings suggest that the diversity of totiviruses in bats is more extensive than previously recognized and highlight the potential for bats to serve as reservoirs for novel toti-like viruses.

3.
Sci Rep ; 14(1): 631, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182678

RESUMO

Probiotics have gained a significant attention as a promising way to improve gut health and overall well-being. The increasing recognition of the potential health advantages associated with functional food products, leading to a specific emphasis on co-encapsulating probiotic bacteria and bioactive compounds within a unified matrix. To further explore this concept, a meta-analysis was performed to assess the effects of probiotics encapsulated in nanoparticles. A comprehensive meta-analysis was conducted, encompassing 10 papers published from 2017 to 2022, focusing on the encapsulation of probiotics within nanoparticles and their viability in various gastrointestinal conditions. The selection of these papers was based on their direct relevance to the research topic. Random-effect models were used to aggregate study-specific risk estimates. In the majority of studies, it was observed that nano-encapsulated nanoparticles showed improved viability over time compared to their free state counterparts. At various time intervals, the odds ratios (OR) with 95% confidence intervals (CI) were estimated using fixed and random effect models. At 0 min, the OR (95%CI) was 2.79 (2.79; 2.80) and 2.38 (2.14; 2.64) for. At 30 and 60 min observation was at similar rate of 2.23 (2.23; 2.24) and 2.05 (1.73; 2.43). However, at 90 min it was 1.39 (1.39; 1.39) and 1.66 (1.29; 2.14) and at 120 min 2.41 (2.41; 2.42) and 2.03 (1.63; 2.52). Overall evaluation of encapsulation revealed an improvement in probiotic bacterial viability in simulated the gastrointestinal environments.


Assuntos
Nanopartículas , Probióticos , Alimento Funcional , Viabilidade Microbiana , Razão de Chances
4.
Artigo em Inglês | MEDLINE | ID: mdl-38279725

RESUMO

Leishmaniasis is a deadly tropical disease that is neglected in many countries. World Health Organization, along with a few other countries, has been working together to protect against these parasites. Many novel drugs from the past few years have been discovered and subjected against leishmaniasis, which have been effective but they are quite expensive for lower-class people. Some drugs showed no effect on the patients, and the longer use of these medicines has made resistance against these deadly parasites. Researchers have been working for better medication by using natural products from medicinal plants (oils, secondary metabo-lites, plant extracts) and other alternatives to find active compounds as an alternative to the current synthetic drugs. MATERIALS AND METHODS: To find more potential natural products to treat Leishmania spp, a study has been conducted and reported many plant metabolites and other natural alternatives from plants and their extracts. Selected research papers with few term words such as natural products, plant metabolites, Leishmaniasis, in vivo, in vitro, and treatment against leishmania-sis; in the Google Scholar, PubMed, and Science Direct databases with selected research papers published between 2015 and 2021 have been chosen for further analysis has been included in this report which has examined either in vivo or in vitro analysis. RESULTS: This paper reported more than 20 novel natural compounds in 20 research papers that have been identified which report a leishmanicidal activity and shows an action against pro-mastigote, axenic, and intracellular amastigote forms. CONCLUSION: Medicinal plants, along with a few plant parts and extracts, have been reported as a possible novel anti-leishmanial medication. These medicinal plants are considered nontoxic to Host cells. Leishmaniasis treatments will draw on the isolated compounds as a source further and these compounds compete with those already offered in clinics.

5.
Arch Biochem Biophys ; 753: 109911, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280562

RESUMO

Diabetes is a metabolic illness that increases protein glycosylation in hyperglycemic conditions, which can have an impact on almost every organ system in the body. The role of vitamin D in the etiology of diabetes under RAGE (receptor for advanced glycation end products) stress has recently received some attention on a global scale. Vitamin D's other skeletal benefits have generated a great deal of research. Vitamin D's function in the development of type 1 and type 2 diabetes is supported by the discovery of 1,25 (OH)2D3 and 1-Alpha-Hydroylase expression in immune cells, pancreatic beta cells, and several other organs besides the bone system. A lower HBA1c level, metabolic syndrome, and diabetes mellitus all seems to be associated with vitamin D insufficiency. Most of the cross-sectional and prospective observational studies that were used to gather human evidence revealed an inverse relationship between vitamin D level and the prevalence or incidence of elevated HBA1c in type 2 diabetes. Several trials have reported on the impact of vitamin D supplementation for glycemia or incidence of type 2 diabetes, with varying degrees of success. The current paper examines the available data for a relationship between vitamin D supplementation and HBA1c level in diabetes and discusses the biological plausibility of such a relationship.


Assuntos
Diabetes Mellitus Tipo 2 , Deficiência de Vitamina D , Humanos , Hemoglobinas Glicadas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/epidemiologia , Estudos Transversais , Vitamina D/uso terapêutico , Vitaminas , Suplementos Nutricionais , Estudos Observacionais como Assunto
6.
Trans R Soc Trop Med Hyg ; 118(3): 206-222, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37972992

RESUMO

Scrub typhus is one of the most neglected tropical diseases, a leading cause of acute undifferentiated febrile illness in areas of the 'tsutsugamushi triangle', diagnosed frequently in South Asian countries. The bacteria Orientia tsutsugamushi is the causative agent of the disease, which enters the human body through the bite of trombiculid mites (also known as chiggers) of the genus Leptotrombidium deliense. Diagnosis of the disease is challenging, as its early symptoms mimic other febrile illnesses like dengue, influenza and corona viruses. Lack of rapid, reliable and cost-effective diagnostic methods further complicates the identification process. Northeast India, a mountainous region with a predominantly rural tribal population, has witnessed a resurgence of scrub typhus cases in recent years. Various ecological factors, including rodent populations, habitat characteristics and climatic conditions, influence its prevalence. Entomological investigations have confirmed the abundance of vector mites, highlighting the importance of understanding their distribution and the probability of transmission of scrub typhus in the region. Proper diagnosis, awareness campaigns and behavioural interventions are essential for controlling scrub typhus outbreaks and reducing its impact on public health in Northeast India. Further research and community-based studies are necessary to accurately assess the disease burden and implement effective prevention strategies.


Assuntos
Orientia tsutsugamushi , Tifo por Ácaros , Trombiculidae , Animais , Humanos , Tifo por Ácaros/diagnóstico , Tifo por Ácaros/epidemiologia , Tifo por Ácaros/microbiologia , Trombiculidae/microbiologia , Reservatórios de Doenças , Índia/epidemiologia
7.
BMC Microbiol ; 23(1): 291, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845637

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is a critical global issue that poses significant threats to human health, animal welfare, and the environment. With the increasing emergence of resistant microorganisms, the effectiveness of current antimicrobial medicines against common infections is diminishing. This study aims to conduct a competitive meta-analysis of surveillance data on resistant microorganisms and their antimicrobial resistance patterns in two countries, Egypt and the United Kingdom (UK). METHODS: Data for this study were obtained from published reports spanning the period from 2013 to 2022. In Egypt and the UK, a total of 9,751 and 10,602 food samples were analyzed, respectively. Among these samples, 3,205 (32.87%) in Egypt and 4,447 (41.94%) in the UK were found to contain AMR bacteria. RESULTS: In Egypt, the predominant resistance was observed against ß-lactam and aminoglycosides, while in the United Kingdom, most isolates exhibited resistance to tetracycline and ß-lactam. The findings from the analysis underscore the increasing prevalence of AMR in certain microorganisms, raising concerns about the development of multidrug resistance. CONCLUSION: This meta-analysis sheds light on the escalating AMR problem associated with certain microorganisms that pose a higher risk of multidrug resistance development. The significance of implementing One Health AMR surveillance is emphasized to bridge knowledge gaps and facilitate accurate AMR risk assessments, ensuring consumer safety. Urgent actions are needed on a global scale to combat AMR and preserve the effectiveness of antimicrobial treatments for the well-being of all living beings.


Assuntos
Anti-Infecciosos , Saúde Única , Animais , Humanos , Antibacterianos/uso terapêutico , beta-Lactamas , Farmacorresistência Bacteriana , Egito , Reino Unido
8.
Biomolecules ; 13(8)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37627247

RESUMO

Antimicrobial resistance (AMR) is a growing public health concern worldwide, and it poses a significant threat to human, animal, and environmental health. The overuse and misuse of antibiotics have contributed significantly and others factors including gene mutation, bacteria living in biofilms, and enzymatic degradation/hydrolyses help in the emergence and spread of AMR, which may lead to significant economic consequences such as reduced productivity and increased health care costs. Nanotechnology offers a promising platform for addressing this challenge. Nanoparticles have unique properties that make them highly effective in combating bacterial infections by inhibiting the growth and survival of multi-drug-resistant bacteria in three areas of health: human, animal, and environmental. To conduct an economic evaluation of surveillance in this context, it is crucial to obtain an understanding of the connections to be addressed by several nations by implementing national action policies based on the One Health strategy. This review provides an overview of the progress made thus far and presents potential future directions to optimize the impact of nanobiotics on AMR.


Assuntos
Antibacterianos , Saúde Única , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Biofilmes , Análise Custo-Benefício
9.
J Nanobiotechnology ; 21(1): 148, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149615

RESUMO

Nanobiotechnology, as a novel and more specialized branch of science, has provided a number of nanostructures such as nanoparticles, by utilizing the methods, techniques, and protocols of other branches of science. Due to the unique features and physiobiological characteristics, these nanostructures or nanocarriers have provided vast methods and therapeutic techniques, against microbial infections and cancers and for tissue regeneration, tissue engineering, and immunotherapies, and for gene therapies, through drug delivery systems. However, reduced carrying capacity, abrupt and non-targeted delivery, and solubility of therapeutic agents, can affect the therapeutic applications of these biotechnological products. In this article, we explored and discussed the prominent nanobiotechnological methods and products such as nanocarriers, highlighted the features and challenges associated with these products, and attempted to conclude if available nanostructures offer any scope of improvement or enhancement. We aimed to identify and emphasize the nanobiotechnological methods and products, with greater prospect and capacity for therapeutic improvements and enhancements. We found that novel nanocarriers and nanostructures, such as nanocomposites, micelles, hydrogels, microneedles, and artificial cells, can address the associated challenges and inherited drawbacks, with help of conjugations, sustained and stimuli-responsive release, ligand binding, and targeted delivery. We recommend that nanobiotechnology, despite having few challenges and drawbacks, offers immense opportunities that can be harnessed in delivering quality therapeutics with precision and prediction. We also recommend that, by exploring the branched domains more rigorously, bottlenecks and obstacles can also be addressed and resolved in return.


Assuntos
Nanocompostos , Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Micelas , Nanopartículas/química , Neoplasias/tratamento farmacológico , Portadores de Fármacos/química
10.
J Biomol Struct Dyn ; : 1-15, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37199276

RESUMO

Available anti-leishmanial drugs are associated with toxic side effects, necessitating the search for safe and effective alternatives. This study is focused on identifying traditional medicinal plant natural products for anti-leishmanial potential and possible mechanism of action. Compounds S and T. cordifolia residual fraction (TC-5) presented the best anti-leishmanial activity (IC50: 0.446 and 1.028 mg/ml) against promastigotes at 48 h and less cytotoxicity to THP-1 macrophages. These test agents elicited increased expression of pro-inflammatory cytokines; TNFα and IL-12. In infected untreated macrophages, NO release was suppressed but was significantly (p < 0.05) increased in infected cells treated with compound S. Importantly, Compound S was found to interact with LdTopoIIdimer in silico, resulting in a likely reduced ability of nucleic acid (dsDNA)-remodelling and, as a result, parasite proliferation in vitro. Thereby, Compound S possesses anti-leishmanial activity and this effect occurs via a Th1-mediated pro-inflammatory response. An increase in NO release and its inhibitory effect on LdTopoII may also contribute to the anti-leishmanial effect of compound S. These results show the potential of this compound as a potential starting point for the discovery of novel anti-leishmanial leads.Communicated by Ramaswamy H. Sarma.

11.
Virus Genes ; 59(3): 464-472, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004601

RESUMO

There is a growing interest in phages as potential biotechnological tools in human health owing to the antibacterial activity of these viruses. In this study, we characterized a new member (named PhiV_005_BRA/2016) of the recently identified phage species Phietavirus Henu 2. PhiV_005_BRA/2016 was detected through metagenomic analysis of stool samples of individuals with acute gastroenteritis. PhiV_005_BRA/2016 contains double-stranded linear DNA (dsDNA), it has a genome of 43,513 base pairs (bp), with a high identity score (99%) with phage of the genus Phietavirus, species of Phietavirus Henu 2. Life style prediction indicated that PhiV_005_BRA/2016 is a lysogenic phage whose the main host is methicillin-resistant Staphylococcus aureus (MRSA). Indeed, we found PhiV_005_BRA/2016 partially integrated in the genome of distinct MRSA strains. Our findings highlights the importance of large-scale screening of bacteriophages to better understand the emergence of multi-drug resistant bacterial.


Assuntos
Bacteriófagos , Gastroenterite , Staphylococcus aureus Resistente à Meticilina , Siphoviridae , Infecções Estafilocócicas , Humanos , Viroma , Infecções Estafilocócicas/microbiologia
12.
Plants (Basel) ; 12(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986895

RESUMO

This study aims to describe the therapeutic potential of C. nocturnum leaf extracts against diabetes and neurological disorders via the targeting of α-amylase and acetylcholinesterase (AChE) activities, followed by computational molecular docking studies to establish a strong rationale behind the α-amylase and AChE inhibitory potential of C. nocturnum leaves-derived secondary metabolites. In our study, the antioxidant activity of the sequentially extracted C. nocturnum leaves extract was also investigated, in which the methanolic fraction exhibited the strongest antioxidant potential against DPPH (IC50 39.12 ± 0.53 µg/mL) and ABTS (IC50 20.94 ± 0.82 µg/mL) radicals. This extract strongly inhibited the α-amylase (IC50188.77 ± 1.67 µg/mL) and AChE (IC50 239.44 ± 0.93 µg/mL) in a non-competitive and competitive manner, respectively. Furthermore, in silico analysis of compounds identified in the methanolic extract of the leaves of C. nocturnum using GC-MS revealed high-affinity binding of these compounds with the catalytic sites of α-amylase and AChE, with binding energy ranging from -3.10 to -6.23 kcal/mol and from -3.32 to -8.76 kcal/mol, respectively. Conclusively, the antioxidant, antidiabetic, and anti-Alzheimer activity of this extract might be driven by the synergistic effect of these bioactive phytoconstituents.

13.
Viruses ; 15(3)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992315

RESUMO

Chaphamaparvovirus (CHPV) is a recently characterized genus of the Parvoviridae family whose members can infect different hosts, including bats, which constitute the second most diverse order of mammals and are described worldwide as important transmitters of zoonotic diseases. In this study, we identified a new CHPV in bat samples from the municipality of Santarém (Pará state, North Brazil). A total of 18 Molossus molossus bats were analyzed using viral metagenomics. In five animals, we identified CHPVs. These CHPV sequences presented the genome with a size ranging from 3797 to 4284 bp. Phylogenetic analysis-based nucleotide and amino acid sequences of the VP1 and NS1 regions showed that all CHPV sequences are monophyletic. They are also closely related to CHPV sequences previously identified in bats in southern and southeast Brazil. According to the International Committee on Taxonomy of Viruses (ICTV) classification criteria for this species (the CHPV NS1 gene region must have 85% identity to be classified in the same species), our sequences are likely a new specie within the genus Chaphamaparvovirus, since they have less than 80% identity with other CHPV described earlier in bats. We also make some phylogenetic considerations about the interaction between CHPV and their host. We suggest a high level of specificity of CPHV and its hosts. Thus, the findings contribute to improving information about the viral diversity of parvoviruses and show the importance of better investigating bats, considering that they harbor a variety of viruses that may favor zoonotic events.


Assuntos
Quirópteros , Parvovirus , Animais , Filogenia , Brasil/epidemiologia , Mamíferos
14.
Antibiotics (Basel) ; 12(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36830181

RESUMO

Antimicrobial resistance increases day by day around the world. To overcome this situation new antimicrobial agents are needed. Spices such as clove, ginger, coriander, garlic, and turmeric have the potential to fight resistant microbes. Due to their therapeutic properties, medicinal herbs and spices have been utilized as herbal medicines since antiquity. They are important sources of organic antibacterial substances that are employed in treating infectious disorders caused by pathogens such as bacteria. The main focus of the study is the bioactivity of the active ingredients present in different kinds of naturally available spices. We conducted a thorough search of PubMed, Google Scholar, and Research Gate for this review. We have read many kinds of available literature, and in this paper, we conclude that many different kinds of naturally available spices perform some form of bioactivity. After reading several papers, we found that some spices have good antimicrobial and antifungal properties, which may help in controlling the emerging antimicrobial resistance and improving human health. Spices have many phytochemicals, which show good antimicrobial and antifungal effects. This review of the literature concludes that the natural bioactivate compounds present in spices can be used as a drug to overcome antimicrobial resistance in human beings.

15.
Pharmaceutics ; 15(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36839932

RESUMO

Many novel medical therapies use nanoparticle-based drug delivery systems, including nanomaterials through drug delivery systems, diagnostics, or physiologically active medicinal products. The approval of nanoparticles with advanced therapeutic and diagnostic potentials for applications in medication and immunization depends strongly on their synthesizing procedure, efficiency of functionalization, and biological safety and biocompatibility. Nanoparticle biodistribution, absorption, bioavailability, passage across biological barriers, and biodistribution are frequently assessed using bespoke and biological models. These methods largely rely on in vitro cell-based evaluations that cannot predict the complexity involved in preclinical and clinical studies. Therefore, assessing the nanoparticle risk has to involve pharmacokinetics, organ toxicity, and drug interactions manifested at multiple cellular levels. At the same time, there is a need for novel approaches to examine nanoparticle safety risks due to increased constraints on animal exploitation and the demand for high-throughput testing. We focus here on biological evaluation methodologies that provide access to nanoparticle interactions with the organism (positive or negative via toxicity). This work aimed to provide a perception regarding the risks associated with the utilization of nanoparticle-based formulations with a particular focus on assays applied to assess the cytotoxicity of nanomaterials.

16.
Antibiotics (Basel) ; 12(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671322

RESUMO

Silver nanoparticles (AgNPs) have unlocked numerous novel disciplines in nanobiotechnological protocols due to their larger surface area-to-volume ratios, which are attributed to the marked reactivity of nanosilver, and due to their extremely small size, which enables AgNPs to enter cells, interact with organelles, and yield distinct biological effects. AgNPs are capable of bypassing immune cells, staying in the system for longer periods and with a higher distribution, reaching target tissues at higher concentrations, avoiding diffusion to adjacent tissues, releasing therapeutic agents or drugs for specific stimuli to achieve a longer duration at a specific rate, and yielding desired effects. The phytofabrication of AgNPs is a cost-effective, one-step, environmentally friendly, and easy method that harnesses sustainable resources and naturally available components of plant extracts (PEs). In addition, it processes various catalytic activities for the degradation of various organic pollutants. For the phytofabrication of AgNPs, plant products can be used in a multifunctional manner as a reducing agent, a stabilizing agent, and a functionalizing agent. In addition, they can be used to curtail the requirements for any additional stabilizing agents and to help the reaction stages subside. Azadirachta indica, a very common and prominent medicinal plant grown throughout the Indian subcontinent, possesses free radical scavenging and other pharmaceutical properties via the regulation of proinflammatory enzymes, such as COX and TOX. It also demonstrates anticancer activities through cell-signaling pathways, modulating tumor-suppressing genes such as p53 and pTEN, transcriptional factors, angiogenesis, and apoptosis via bcl2 and bax. In addition, it possesses antibacterial activities. Phytofabricated AgNPs have been applied in the areas of drug delivery, bioimaging, biosensing, cancer treatment, cosmetics, and cell biology. Such pharmaceutical and biological activities of phytofabricated AgNPs are attributed to more than 300 phytochemicals found in Azadirachta indica, and are especially abundant in flavonoids, polyphenols, diterpenoids, triterpenoids, limonoids, tannins, coumarin, nimbolide, azadirachtin, azadirone, azadiradione, and gedunin. Parts of Azadirachta indica, including the leaves in various forms, have been used for wound healing or as a repellent. This study was aimed at examining previously biosynthesized (from Azadirachta indica) AgNPs for anticancer, wound-healing, and antimicrobial actions (through MTT reduction assay, scratch assay, and microbroth dilution methods, respectively). Additionally, apoptosis in cancer cells and the antibiofilm capabilities of AgNPs were examined through caspase-3 expression, dentine block, and crystal violet methods. We found that biogenic silver nanoparticles are capable of inducing cytotoxicity in HCT-116 colon carcinoma cells (IC50 of 744.23 µg/mL, R2: 0.94), but are ineffective against MCF-7 breast cancer cells (IC50 >> 1000 µg/mL, R2: 0.86). AgNPs (IC50 value) induced a significant increase in caspase-3 expression (a 1.5-fold increase) in HCT-116, as compared with control cells. FITC-MFI was 1936 in HCT-116-treated cells, as compared to being 4551 in cisplatin and 1297 in untreated cells. AgNPs (6.26 µg/mL and 62.5 µg/mL) induced the cellular migration (40.2% and 33.23%, respectively) of V79 Chinese hamster lung fibroblasts; however, the improvement in wound healing was not significant as it was for the controls. AgNPs (MIC of 10 µg/mL) were very effective against MDR Enterococcus faecalis in the planktonic mode as well as in the biofilm mode. AgNPs (10 µg/mL and 320 µg/mL) reduced the E. faecalis biofilm by >50% and >80%, respectively. Natural products, such as Syzygium aromaticum (clove) oil (MIC of 312.5 µg/mL) and eugenol (MIC of 625 µg/mL), showed significant antimicrobial effects against A. indica. Our findings indicate that A. indica-functionalized AgNPs are effective against cancer cells and can induce apoptosis in HCT-116 colon carcinoma cells; however, the anticancer properties of AgNPs can also be upgraded through active targeting (functionalized with enzymes, antibiotics, photosensitizers, or antibodies) in immunotherapy, photothermal therapy, and photodynamic therapy. Our findings also suggest that functionalized AgNPs could be pivotal in the development of a novel, non-cytotoxic, biocompatible therapeutic agent for infected chronic wounds, ulcers, and skin lesions involving MDR pathogens via their incorporation into scaffolds, composites, patches, microgels, or formulations for microneedles, dressings, bandages, gels, or other drug-delivery systems.

17.
One Health ; 16: 100477, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36593979

RESUMO

Antimicrobial resistance (AMR) is increasing worldwide due to overuse, misuse and incomplete treatment of antibiotics. Many countries are facing the excessive issue due to the spreading of AMR not only in humans and animals, but also in water and agri-food sector. Our main aim was to perform a competitive meta-analysis of surveillance-resistant microbes and their antimicrobial superintendence in Italy and Thailand. Data have been collected from reports published for the period 2012-2021. A total of 9507 and 11,753 food samples contained 3905 (41.07%) and 3526 (30%) AMR bacteria in Italy and Thailand, respectively. In Italy, the highest microbial prevalence was ß-lactam and tetracycline, while in Thailand mostly isolates showed resistance to cephalosporin and aminoglycoside. Our findings contribute to highlighting the increment of AMR related to different microbes with tendency to become multidrug resistant.

18.
Mini Rev Med Chem ; 23(2): 187-191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35692143

RESUMO

Chitin and chitosan have unique structures with significant functional groups carrying useful chemical capabilities. Chitin and chitosan are acknowledged as novel biomaterials with advantageous biocompatibility and biodegradability. Chitosan is a polysaccharide that is made from chitin. There have been several attempts to employ this biopolymer in the biomedical area. This material's application in the production of artificial skin, drug targeting, and other areas is explored. The most prevalent strategies for recovering chitin from sea organisms are described and various pharmacological and biological uses are discussed. This review article targets drug delivery with the help of chitosan derived nanomaterial. The drug delivery system applications through nonmaterial have encountered a considerable role in the pharmaceutical, medical, biological, and other sectors in recent years. Nanomaterials have advanced applications as novel drug delivery systems in many fields, especially in industry, biology, and medicine. In the biomedical and pharmaceutical arena, the natural polymer-based nanoparticulate method has now been widely studied as particulate vehicles. By mixing alginate with other biopolymers, by immobilizing specific molecules such as sugar molecules and peptides by chemical or physical cross-linking, different properties and structures such as biodegradability, gelling properties, mechanical strength, and cell affinity can be obtained. Owing to their inherent ability to deliver both hydrophilic and hydrophobic drug molecules, increase stability, decrease toxicity, and enhance commonly formulated medications, these particles are now widely used in imaging and molecular diagnostics, cosmetics, household chemicals, sunscreens, radiation safety, and novel drug delivery.


Assuntos
Quitosana , Quitosana/química , Sistemas de Liberação de Medicamentos , Quitina/química , Materiais Biocompatíveis/química , Preparações Farmacêuticas
19.
Virus Genes ; 59(1): 167-172, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36394716

RESUMO

The totiviridae family contains viruses with double-stranded RNA genomes of 4.6-7.0 kpb, which encode a capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), and they are approximately 40 nm in diameter with icosahedral symmetry. Totiviruses were first isolated from mosquitoes collected in Shaanxi Province (China). Here, we report a new Aedes aegypti Totivirus (AaTV) identified in mosquitoes from the Amazon rainforest. Mosquitoes (Diptera: Culicidae) were collected from a forest reserve belonging to the Amazon forest in the city of Macapá, Amapá state, Northern Brazil. A viral sequence with a 5748 nucleotide length that was nearly identical to Aedes aegypti Totivirus (AaTV), here named Aedes aegypti Totivirus BR59AP, was detected. A detailed molecular analysis was performed and shows that AaTV-BR59AP is highly related to the AaTV strain from the Caribbean region. We emphasize the importance of the characterization of new viruses in mosquitoes to deepen our understanding of viral diversity in insects and their potential role in disease.


Assuntos
Aedes , Totiviridae , Totivirus , Vírus , Animais , Totivirus/genética , Brasil , Totiviridae/genética
20.
Antibiotics (Basel) ; 13(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38247576

RESUMO

The "One Health" initiative is a critical strategy that recognizes the interconnectedness between human, animal, and environmental health in the spread and containment of infectious pathogens. With the ease of global transportation, transboundary disease outbreaks pose a significant threat to food safety and security, endangering public health and having a negative economic impact. Traditional diagnostic techniques based on genotypic and phenotypic analyses are expensive, time-consuming, and cannot be translated into point-of-care tools, hindering effective disease management and control. However, with advancements in molecular methods, biosensors, and new generation sequencing, rapid and reliable diagnostics are now available. This review provides a comprehensive insight into emergent viral and bacterial pathogens and antimicrobial resistance, highlighting the importance of "One Health" in connecting detection and effective treatment. By emphasizing the symbiotic relationship between human and animal health, this paper underscores the critical role of "One Health" initiatives in preventing and controlling infectious diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...